

VM5K

[image: _images/grid5000.png]
A Python module designed to perform reproducible cloud experiments. It will help you to manage
virtual machines on the Grid‘5000 <https://www.grid5000.fr/> plaform.

It is composed of three main tools:

	a command line tool that deploy virtual machines (vm5k)

	an experimental engine that conduct user defined workflow (vm5k_engine)

	a lib to setup Debian hosts with libvirt and manage virtual machines

Developped by the Hemera initiative (2010-2014).

	Readme
	Requirements

	Installation

	People

	vm5k: automatic virtual machines deployment
	Workflow

	Basic usage

	Advanced usage

	Options

	vm5k_engine: automatizing experiments

	API Documentation
	vm5k.deployment

	vm5k.actions

	vm5k.config

	vm5k.engine

	Publications

	Index

	Module Index

	Search Page

Readme for the vm5k package

A python module to ease the experimentations of virtual Machines on the Grid‘5000 platform.
It is composed of:

	a script that deploy virtual machines (vm5k)

	an experimental engine that conduct user defined workflow for a set of parameters (vm5k_engine)

	a lib to setup Debian hosts with libvirt and manage virtual machines

Developed by the Inria Hemera initiative 2010-2014
https://www.grid5000.fr/mediawiki/index.php/Hemera

See documentation on http://vm5k.readthedocs.org

Requirements

The module requires:

	execo 2.4, <http://execo.gforge.inria.fr/>

Installation

Connect on a Grid‘5000 frontend and type the following commands:

export http_proxy="http://proxy:3128"
export https_proxy="https://proxy:3128"
easy_install --user execo
easy_install --user vm5k

Add .local/bin to your path and run vm5k !

People

Contributors

	Laurent Pouilloux

	Daniel Balouek-Thomert

	Jonathan Rouzaud-Cornabas

	Flavien Quesnel

	Jonathan Pastor

	Takahiro Hirofuchi

	Adrien Lèbre

Grid‘5000 technical support

	Matthieu Imbert

	Simon Delamare

vm5k: automatic virtual machines deployment

Vm5k is a tool used to deploy a large number of virtual machines
on the Grid‘5000 platform. It provides several options to customize your
environments and topology.

Workflow

	define a deployment topology on Grid‘5000:

	distributed virtual machines using a template and a list of clusters/sites

	or from a given xml file (see example below)

	manage the reservation:

	find the next window available for the deployment

	or use an existing reservation

	install the hosts

	deployment of a kadeploy environment name/file

	upgrade the hosts and configure libvirt

	create the backing file for the virtual machine

	configure the network

	determine the parameters from the oar/oargridjob

	generate dnsmasq configuration

	deploy the virtual machines

	create the qcow2 disks on the hosts

	perform installation with virt-install

	start the virtual machines

	execute a program on the frontend

[image: _images/vm5k_workflow.png]

Basic usage

The basic usage is to create a certain number of virtual machines on Grid‘5000.
To deploy 100 VMs on wheezy-x64-base hosts and with the wheezy-x64-base.qcow2 KVM image
on any Grid5000 cluster with hardware virtualization, for 2 hours:

vm5k --n_vm 100 -w 2:00:00

This will automatically find free nodes on Grid‘5000 that can sustains your virtual
machines, perform the reservation and deploy hosts and VMs automatically.

Choose a distribution for the VMs

Default distribution follow a round-robin mechanism, i.e. adding vm to host while cycling around
them and checking that it can sustain more VM. But you may want to have a the same number of VMs on
all hosts. For that use n_by_hosts:

vm5k -r grid5000:20 -n 100 -d n_by_hosts

You can also have a concentrated distribution meaning that next host will be used when
the previous one cannot sustain more VM, i.e. have enough memory to start it:

vm5k -r grid5000:20 -n 100 -d concentrated

To control more finely the distribution, you must use the infile option, that is described in
Topology file [http://vm5k.readthedocs.org/en/latest/vm5k.html#use-a-topology-file].
A generated one can be found in vm5k outdir after deployment or in examples directory of
vm5k package.

Select the hosts hardware

If you want to test your application on a specific hardware (CPU, RAM, …), you can select the
Grid‘5000 elements you want to use by giving a list of cluster or sites:

vm5k --n_vm 100 -r hercule,griffon,graphene -w 2:00:00

or select the number of hosts you want on each element:

vm5k --n_vm 100 -r taurus:4,nancy:10 -w 2:00:00

See https://www.grid5000.fr/mediawiki/index.php/Special:G5KHardware for
more details on the cluster hardware.

Define the VMs template

You can customize the virtual machines components by defining a template:

vm5k --n_vm 20 --vm_template '<vm mem="4096" hdd="10" n_cpu="4" cpuset="auto"/>'

or using Topology file [http://vm5k.readthedocs.org/en/latest/vm5k.html#use-a-topology-file].

Launch a program after the deployment

If you already have an experimental script that must be run on the deployed hosts and VMs,
you can use -p option:

vm5k --n_vm 100 -p myscript.sh -o myxp

You can access the list of hosts and VMs in myxp directory in simple csv or in XML format.
Have a look to the file vm5k/examples/boot_time.py for a simple example in Python.

Advanced usage

Use an existing job

You may use an existing reservation:

vm5k --n_vm 100 -j 42895
vm5k --n_vm 10 -j grenoble:1657430
vm5k --n_vm 45 -j grenoble:1657430,toulouse:415866,rennes:673350

It will retrieve the hosts that you have, deploy and configure them, and finally
distribute the VMs on them.

You can also know how many VMs can be run on a list of hosts (checking RAM availability)
using:

vm5k_max_vms -j 42895 -t '<vm mem="2048" hdd="10" cpu="4" cpuset="auto"/>'

Customize the environments of the hosts and VMs

To perform your experiments, you may want to use specific environments to test the effect of
various configurations (distribution version, kernel parameters, vm disk, …). You can
choose hosts operating system with:

vm5k --n_vm 50 --walltime 2:00:00 --env_name wheezy-x64-prod
vm5k --n_vm 50 --walltime 2:00:00 --env_name user:env_name
vm5k --n_vm 50 --walltime 2:00:00 --env_file path/to/your/env_file

You may also want to use your virtual machines disk:

vm5k --n_vm 50 --walltime 2:00:00 --vm_backing_file path_to_my_qcow2_file_on_g5k

For more complex situtation, i.e. using different backing_file for the VMs, you need to use the XML
topology_file.

Deploy in an isolated vlan

Grid‘5000 offers the possibility of using KaVLAN to deploy your nodes in an isolated VLAN,
https://www.grid5000.fr/mediawiki/index.php/Network_isolation_on_Grid%275000. You can
use it in vm5k with:

vm5k --n_vm 100 -r reims -w 2:00:00 -k
vm5k --n_vm 100 -r taurus:4,nancy:10 -w 2:00:00 -k
vm5k --n_vm 600 -r grid5000:100 -w 2:00:00 -k -b reims

When using global kavlan, i.e. a isolated VLAN on multiple sites, you must blacklist
reims due to bug 4634 [https://intranet.grid5000.fr/bugzilla/show_bug.cgi?id=4634]

Use a topology file

To have the finest control on the deployment topology, you can use an input file that described the
topology and VMs
characteristics:

vm5k -i topology_file.xml -w 6:00:00

where topology_file.xml is:

<vm5k>
 <site id="luxembourg">
 <cluster id="granduc">
 <host id="granduc-2">
 <vm mem="2048" hdd="4" id="vm-11" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-12" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-13" cpu="1"/>
 </host>
 <host id="granduc-3">
 <vm mem="2048" hdd="4" id="vm-14" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-15" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-16" cpu="1"/>
 </host>
 <host id="granduc-5">
 <vm mem="2048" hdd="4" id="vm-17" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-18" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-19" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-20" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-21" cpu="1"/>
 </host>
 <host id="granduc-9">
 <vm mem="2048" hdd="4" id="vm-22" cpu="1"/>
 </host>
 </cluster>
 </site>
 <site id="lyon">
 <cluster id="hercule">
 <host id="hercule-1">
 <vm mem="2048" hdd="4" id="vm-30" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-31" cpu="1"/>
 </host>
 </cluster>
 <cluster id="orion">
 <host id="orion-1">
 <vm mem="2048" hdd="4" id="vm-32" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-33" cpu="1"/>
 </host>
 <host id="orion-2">
 <vm mem="2048" hdd="4" id="vm-34" cpu="1"/>
 <vm mem="2048" hdd="4" id="vm-35" cpu="1"/>
 </host>
 </cluster>
 </site>
</vm5k>

Options

Execution

Manage how vm5k is executed

	-h, --help

	show this help message and exit

	-v, --verbose

	print debug messages

	-q, --quiet

	print only warning and error messages

	-o OUTDIR, --outdir OUTDIR

	where to store the vm5k log files
default=vm5k_20140307_013045_+0100

	-p PROGRAM, --program PROGRAM

	Launch a program at the end of the deployment

	--plot

	draw a topological graph of the deployment

Mode

Define the mode of vm5k

	-n N_VM, --n_vm N_VM

	number of virtual machines

	-i INFILE, --infile INFILE

	XML file describing the placement of VMs on G5K sites and clusters

	-j JOB_ID, --job_id JOB_ID

	use the hosts from a oargrid_job or a oar_job.

	-w WALLTIME, --walltime WALLTIME

	duration of your reservation

	-k, --kavlan

	Deploy the VMs in a KaVLAN

Physical hosts

Tune the physical hosts.

	-r RESOURCES, --resources RESOURCES

	list of Grid‘5000 elements

	-b BLACKLISTED, --blacklisted BLACKLISTED

	list of Grid‘5000 elements to be blacklisted

	-e ENV_NAME, --env_name ENV_NAME

	Kadeploy environment name

	-a ENV_FILE, --env_file ENV_FILE

	path to the Kadeploy environment file

	--forcedeploy

	force the deployment of the hosts

	--nodeploy

	consider that hosts are already deployed and configured

	--host-packages HOST_PACKAGES

	comma separated list of packages to be installed on the hosts

Virtual machines

Tune the virtual machines.

	-t VM_TEMPLATE, --vm_template VM_TEMPLATE

	XML string describing the virtual machine

	-f VM_BACKING_FILE, --vm_backing_file VM_BACKING_FILE

	backing file for your virtual machines

	-l VM_DISK_LOCATION, --vm_disk_location VM_DISK_LOCATION

	Where to create the qcow2: one (default) or all)

	-d VM_DISTRIBUTION, --vm_distribution VM_DISTRIBUTION

	how to distribute the VMs distributed (default) or concentrated

	--vm-clean-disks

	force to use a fresh copy of the vms backing_file

vm5k_engine: automatizing experiments

An engine to perform automatic cloud experiments on Grid‘5000, based on execo_engine.

More information can be found on https://www.grid5000.fr/mediawiki/index.php/Vm5k_2014_School_tutorial

API documentation

Vm5k can also been used in any other python project. Full documentation for
modules can be found here.

	vm5k.deployment

	vm5k.actions
	VM definition and distribution

	VM state

	vm5k.config

	vm5k.engine

vm5k.deployment

This module provides tools to deploy hosts and virtual machines on the Grid‘5000 platform,
using a preconfigured version of debian wheezy.

	a wheezy-x64-base environnement

	libvirt-bin and qemu-kvm from debian testing (jessie)

	a bridged networking for virtual machines

It needs an IP address range, either from g5k-subnets or kavlan to configure the VMs.

	
class vm5k.deployment.vm5k_deployment(infile=None, resources=None, hosts=None, ip_mac=None, vlan=None, env_name=None, env_file=None, vms=None, distribution=None, outdir=None)

	Base class to control a deployment of hosts and virtual machines on
Grid‘5000. It helps to deploy a wheezy-x64-base environment,
to install and configure libvirt from testing repository, and to deploy
virtual machines.

The base run() method allows to setup automatically the hosts and
virtual machines, using the value of the object.

	
configure_libvirt(bridge='br0', libvirt_conf=None)

	Enable a bridge if needed on the remote hosts, configure libvirt
with a bridged network for the virtual machines, and restart service.

	
configure_service_node()

	Setup automatically a DNS server to access virtual machines by id
and also install a DHCP server if kavlan is used

	
deploy_vms(clean_disks=False, disk_location='one', apt_cacher=False)

	Destroy the existing VMS, create the virtual disks, install the vms
start them and wait until they have rebooted

	
hosts_deployment(max_tries=1, check_deploy=True, conf_ssh=True)

	Deploy the hosts using kadeploy, configure ssh for taktuk execution
and launch backing file disk copy

	
packages_management(upgrade=True, other_packages=None, launch_disk_copy=True, apt_cacher=False)

	Configure APT to use testing repository,
perform upgrade and install required packages. Finally start
kvm module

	
run()

	Launch the deployment and configuration of hosts and virtual
machines: hosts_deployment, packages_mamangement, configure_service_node
configure_libvirt, deploy_vms

vm5k.actions

A set of functions to manipulate virtual machines on Grid‘5000

This module provides tools to interact with the virtual machines.

VM definition and distribution

	
vm5k.actions.show_vms(vms)

	Print a short resume of vms parameters.

	Params vms

	a list containing a dict by virtual machine

	
vm5k.actions.define_vms(vms_id, template=None, ip_mac=None, tap=None, state=None, host=None, n_cpu=None, cpusets=None, mem=None, hdd=None, backing_file=None, real_file=None)

	Create a list of virtual machines, where VM parameter is a dict
similar to
{‘id’: None, ‘host’: None, ‘ip’: None, ‘mac’: None,
‘mem’: 512, ‘n_cpu’: 1, ‘cpuset’: ‘auto’,
‘hdd’: 10, ‘backing_file’: ‘/tmp/vm-base.img’,
‘state’: ‘KO’}

Can be generated from a template or using user defined parameters that
can be a single element or a list of element

	Parameters

	
	vms_id – a list of string that will be used as vm id

	template – an XML element defining the template of the VM

	ip_mac – a list of tuple containing ip, mac correspondance

	state – the state of the VM

	host – the host of the VM (string)

	n_cpu – the number of virtual CPU of the VMs

	real_file – boolean to use a real file

	
vm5k.actions.distribute_vms(vms, hosts, distribution='round-robin')

	Distribute the virtual machines on the hosts.

	Parameters

	
	vms – a list of VMs dicts which host key will be updated

	hosts – a list of hosts

	distribution – a string defining the distribution type:
‘round-robin’, ‘concentrated’, ‘n_by_hosts’, ‘random

	
vm5k.actions.list_vm(hosts, not_running=False)

	Return the list of VMs on hosts using a disk which keys are the hosts and
value are list of VM id

VM state

	
vm5k.actions.destroy_vms(hosts, undefine=False)

	Destroy all the VM on the hosts

	
vm5k.actions.create_disks(vms)

	Return an action to create the disks for the VMs on the hosts

	
vm5k.actions.create_disks_all_hosts(vms, hosts)

	Create a temporary file containing the vms disks creation commands
upload it and run it on the hosts

	
vm5k.actions.install_vms(vms)

	Return an action to install the VM on the hosts

	
vm5k.actions.start_vms(vms)

	Return an action to start the VMs on the hosts

	
vm5k.actions.wait_vms_have_started(vms, restart=True)

	Scan port 22 on all vms, distributed on hosts

	
vm5k.actions.migrate_vm(vm, host)

	Migrate a VM to an host

	
vm5k.actions.rm_qcow2_disks(hosts)

	Removing qcow2 disks located in /tmp

vm5k.config

Define a dict for default VM:

default_vm = {'id': None, 'host': None, 'ip': None, 'mac': None,
'mem': 512, 'n_cpu': 1, 'cpuset': 'auto',
'hdd': 10, 'backing_file': '/tmp/vm-base.img',
'state': 'KO'}

Create some new color_style.

vm5k.engine

	
class vm5k.engine.vm5k_engine

	The base vm5k engine class, that is build from execo_engine.Engine
and can be used to perform virtual machines experiments.

	
create_paramsweeper()

	Generate an iterator over combination parameters

	
force_options()

	Allow to override default options in derived engine

	
get_resources()

	Retrieve the ressources for the vm5k_deployement and define
the list of hosts and ip_mac.

	
make_reservation()

	Perform a reservation of the required number of nodes, with 4000 IP.

	
setup_hosts()

	Launch the vm5k_deployment

	
class vm5k.engine.vm5k_engine_para

	A engine that use threads to treate combination in parallel

	
run()

	The main experimental workflow, as described in
Using the Execo toolkit to perform ...

Publications

Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lèbre, Takahiro Hirofuchi

Using the EXECO toolbox to perform automatic and reproducible cloud experiments [http://hal.inria.fr/hal-00861886/]

1st International Workshop on UsiNg and building ClOud Testbeds UNICO, collocated with IEEE CloudCom 2013

Takahiro Hirofuchi, Adrien Lèbre, and Laurent Pouilloux

Adding a Live Migration Model Into SimGrid, One More Step Toward the Simulation of Infrastructure-as-a-Service Concerns [http://hal.inria.fr/hal-00861882]

In 5th IEEE International Conference on Cloud Computing Technology and Science (IEEE CloudCom 2013), Bristol, United Kingdom, December 2013

Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas Niclausse, Lucas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec

Adding Virtualization Capabilities to Grid‘5000 [http://hal.inria.fr/hal-00946971]

Cloud Computing and Services Science, vol 367, pp 3-20, Springer International Publishing, 2013

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vm5k	

 	
 	
 vm5k.actions	

 	
 	
 vm5k.config	

 	
 	
 vm5k.deployment	

 	
 	
 vm5k.engine	

Index

 C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | V
 | W

C

 	
 	configure_libvirt() (vm5k.deployment.vm5k_deployment method)

 	configure_service_node() (vm5k.deployment.vm5k_deployment method)

 	
 	create_disks() (in module vm5k.actions)

 	create_disks_all_hosts() (in module vm5k.actions)

 	create_paramsweeper() (vm5k.engine.vm5k_engine method)

D

 	
 	define_vms() (in module vm5k.actions)

 	deploy_vms() (vm5k.deployment.vm5k_deployment method)

 	
 	destroy_vms() (in module vm5k.actions)

 	distribute_vms() (in module vm5k.actions)

F

 	
 	force_options() (vm5k.engine.vm5k_engine method)

G

 	
 	get_resources() (vm5k.engine.vm5k_engine method)

H

 	
 	hosts_deployment() (vm5k.deployment.vm5k_deployment method)

I

 	
 	install_vms() (in module vm5k.actions)

L

 	
 	list_vm() (in module vm5k.actions)

M

 	
 	make_reservation() (vm5k.engine.vm5k_engine method)

 	
 	migrate_vm() (in module vm5k.actions)

P

 	
 	packages_management() (vm5k.deployment.vm5k_deployment method)

R

 	
 	rm_qcow2_disks() (in module vm5k.actions)

 	
 	run() (vm5k.deployment.vm5k_deployment method)

 	(vm5k.engine.vm5k_engine_para method)

S

 	
 	setup_hosts() (vm5k.engine.vm5k_engine method)

 	
 	show_vms() (in module vm5k.actions)

 	start_vms() (in module vm5k.actions)

V

 	
 	vm5k.actions (module)

 	vm5k.config (module)

 	vm5k.deployment (module)

 	
 	vm5k.engine (module)

 	vm5k_deployment (class in vm5k.deployment)

 	vm5k_engine (class in vm5k.engine)

 	vm5k_engine_para (class in vm5k.engine)

W

 	
 	wait_vms_have_started() (in module vm5k.actions)

 _static/vm5k_workflow.png
HE
L
ZlEle
" Ssegy e
o o
5 2]
2 WoUpan
g P55
g £
& g
P
i~
01005 =
. Soy
Wy
Sl
g@wm/
M5
i3
HE
et >
7000, ~~_
02 L
ONdeg ™
a

vm5k

find the next window for

define a service node

use an existing reservatior -

_images/grid5000.png
g Ny,
Q Gnd’5000

s ™

_images/vm5k_workflow.png
HE
L
ZlEle
" Ssegy e
o o
5 2]
2 WoUpan
g P55
g £
& g
P
i~
01005 =
. Soy
Wy
Sl
g@wm/
M5
i3
HE
et >
7000, ~~_
02 L
ONdeg ™
a

vm5k

find the next window for

define a service node

use an existing reservatior -

_static/circular_tree.png
5h,
——
=

S}

|

(] [

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 VM5K

 		
 Readme

 		
 Requirements

 		
 Installation

 		
 People

 		
 Contributors

 		
 Grid‘5000 technical support

 		
 vm5k: automatic virtual machines deployment

 		
 Workflow

 		
 Basic usage

 		
 Choose a distribution for the VMs

 		
 Select the hosts hardware

 		
 Define the VMs template

 		
 Launch a program after the deployment

 		
 Advanced usage

 		
 Use an existing job

 		
 Customize the environments of the hosts and VMs

 		
 Deploy in an isolated vlan

 		
 Use a topology file

 		
 Options

 		
 Execution

 		
 Mode

 		
 Physical hosts

 		
 Virtual machines

 		
 vm5k_engine: automatizing experiments

 		
 API Documentation

 		
 vm5k.deployment

 		
 vm5k.actions

 		
 VM definition and distribution

 		
 VM state

 		
 vm5k.config

 		
 vm5k.engine

 		
 Publications

_static/file.png

_static/grid5000.png
g Ny,
Q Gnd’5000

s ™

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

